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Phragmites in a changing world




Global Change Threats

N Eutrophication

Galloway et al 2004



Global Change Threats

N Eutrophication

* Rising CO,
Lusscomine 306,87 ppm
Ice-core data before 1958. Mauna Loa data after 1958.
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What is driving the change in plant
communities in wetlands?

Recent invasion of Phragmites australis

— Interdisciplinary investigations from ecophysiological
and ecosystem perspective

— How are native & introduced Phragmites lineages
affected by global change



Cryptic Invasion of Phragmites

North American Haplotypes
|

Non-native lineage of
Phragmites has been
Introduced into North
America

— 27+ types word wide

— 11 types native to North
America

Introduced - Eurasia
Saltonstall 2002 PNAS



Cryptic Invasion of Phragmites

Introduced
® PnOr to 1910, Very a) Native Haplotypes Before 1910 b} Invasive Haplotype EEfGE 1910

few introduced
populations found in
North America

e After 1960, introduced
lineage spreading
rapidly south and west

Saltonstall 2002 PNAS



Introduced
Phragmites
Camden, NJ 18
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What makes the introduced lineage
SO successful?
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Journal of Ecology

Jowrnal of Ecology 2010, 98, 451458 dot: 10.1111/5.1365-2745.2009.01625.x

Ecophysiological differences between genetic lineages
facilitate the invasion of non-native Phragmites
australis in North American Atlantic coast wetlands

Thomas J. Mozdzer*t and Joseph C. Zieman

Department of Environmental Sciences, University of Virginia, 291 McCormick PO Box 400123, Charottesville,
VA 22904, USA o NS 2

Summary :
1. Over the last century, native Phragmites australis ineages have been almost completely replaced
along the North American Atlantic coast by an aggressive lineage onginating from Eurasia. Under-
standing the mechanisms that facilitate biologcal invasions is cntical to better understand what
makes an invasive species successful.

2. Our objective was to deternmiune what makes the introduced lineage so successfulin the study area
by specifically investigating if morphological and ecophysiological differences exist between native
and introduced genetic lineages of P. australis. We hypothesized a priori that due to phenotypic
differences and differences in plant nitrogen (N) content between lineages, the introduced lineage
would have a greater photosynthetic potential.




Introduced has 30-44% greater PS rate
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Mozdzer & Zieman 2010 Journal of Ecology



Introduced has 50% greater canopy

Total leaf area (cm? ramet 1)
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Mozdzer & Zieman 2010 Journal of Ecology



Introduced has 2% chlorophyll concentration

Chlorophyll .., concentration (ug g%
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Mozdzer & Zieman 2010 Journal of Ecology



AOB ‘j LAN | S The open-access
;- journal for plant sciences

Invited Review

SPECIAL ISSUE: Phragmites australis in North America
and Europe

Physiological ecology and functional traits of North American
native and Eurasian introduced Phragmites australis lineages

Thomas J. Mozdzer®™, Jacques Brisson? and Eric L. G. Hazelton3*

! Biology Department, Bryn Mawr College, Bryn Mawr, PA 19010, USA

2 Département de sciences biologiques, Institut de recherche en biologie végétale, University of Montreal, 4101 East, Sherbrooke Street,
Montreal, QC, Canada H1X 2B2

* Ecology Center and Department of Watershed Science, Utah State University, Logan, UT 84322, USA

“ Smithsonian Environmental Research Center, P




Density (ramets m-2)

Introduced has greater Density & is Taller
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Mozdzer et al 2013 AoB Plants



Introduced has greater Leaf Area & Biomass

Leaf area per culm (cm2)
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Mozdzer et al 2013 AoB Plants



3.0

Photosynthetic potential (Cmol CO, ramet ™ s'l)

Scaling Results Up

Per Plant
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Introduced has 83% greater PS rate per plant
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Introduced demands 4 x more N
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Mozdzer & Zieman 2010 Journal of Ecology



Estuanes and Coasts (2010) 33:784-797
DOL 10100751 2237-009-9254-9

Nitrogen Uptake by Native and Invasive Temperate Coastal
Macrophytes: Importance of Dissolved Organic Nitrogen

Thomas J. Mozdzer « Joseph C. Zieman -
Karen J. McGlathery

iC) Coastal and Estuarine Research Federation 2010

Abstract We investigated if the success of the invasive
common reed Phragmites australis could be attributed to a
competitive ability to use dissolved organic nitrogen (DON)
when compared to the dominant macrophyte Spartina
alterniflora in tidal wetlands. Short-term nutrient uptake
experiments were performed in the laboratory on two
genetic lineages of Phragmites (native and introduced to
North America) and 5 alterniflora. Our results provide
the first evidence for direct assimilation of DON by

Kevwords Phragmites - Spartina - Amino acids - Urea -
DON - N uptake

Introduction
Intertidal marshes of the North American Atlantic coast are

dominated by the halophytic smooth cordgrass, Spartina
alterniflora (Mitsch and Gosselink 1993). Over the past
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Introduced better under higher [N]
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Effects of Global Change

Atmospheric N deposition

b) Invasive Haplotype Before 1910
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Galloway et al 2004 Saltonstall 2002



CO, concentrations are increasing

PARTS PER MILLION
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Atmospheric CO, at Mauna Loa Observatory

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory
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OPEN a ACCESS Freely available online @ PLOS | ONE

Jack-and-Master Trait Responses to Elevated CO, and N:

A Comparison of Native and Introduced Phragmrtes
australis

Thomas J. Mozdzer*®, J. Patrick Megonigal

Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America

Abstract

Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function.
Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities.
However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and
physiology. Here we present a novel case investigating the role of fitness trait values and phenotypic plasticity to global
change factors between conspecific lineages of Phragmites australis. We hypothesized that due to observed differences in
the competitive success of North American-native and Eurasian-introduced P. australis genotypes, Eurasian-introduced P.
australis would exhibit greater fitness in response to global change factors. Plasticity and plant performance to ambient and
predicted levels of carbon dioxide and nitrogen pollution were investigated to understand how invasion pressure may
change in North America under a realistic global change scenario. We found that the introduced Eurasian genotype
expressed greater mean trait values in nearly every ecophysiological trait measured - aboveground and belowground - to
elevated CO, and nitrogen, outperforming the native North American conspecific by a factor of two to three under every
global change scenario. This response is consistent with “jack and master” phenotypic plasticity. We suggest that
differences in plant nitrogen productivity, specific leaf area, belowground biomass allocation, and inherently higher relative
growth rate are the plant traits that may enhance invasion of Eurasian Phragmites in North America. Given the high degree
of genotypic variability within this species, and our limited number of genotypes, our results must be interpreted cautiously.
Our study is the first to demonstrate the potential importance of jack-and-master phenotypic plasticity in plant invasions
when facing imminent global change conditions. We suggest that jack-and-master invasive genotypes and/or species
similar to introduced P. australis will have an increased ecological fitness, facilitating their invasion in both stressful and
resource rich environments.

australis. PLaS ONE }'[1 0): e42794. doi:10. IE?UJOurnaI pone 0042794

Editor: Jacqueline Mohan, University of Georgia, United States of America

Thanks to Laura Meyerson for providing plants!



Effects of CO, & N on Phragmites
Native Introduced
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Differential belowground response

Introduced




Effects of Predicted Global Change
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Introduced greater response to N
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Introduced 3X response to CO,+N
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CO, response muted if N not available
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Introduced has greater NP — better at | N
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G p<0.0001, CO, p<0.0001, N p=0.142, GxN p=0.032



Construction costs

* Energy needed to synthesize biomass

* g glucose per g tissue
« Estimated from [C], [N] and [ash]

— High cost: lignin, protein
— Low cost: starch

* Pioneered by Penning De Vries 1974

— See http://lwww.science.poorter.eu/HS33 index.html for
more info

» Associated with longevity & payback time
e Usually measured in leaves
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Research Article
SPECIAL ISSUE: Phragmites australis in North America and Europe

Belowground advantages in construction cost facilitate
a cryptic plant invasion

Joshua S. Caplan®?, Christine N. Wheaton® and Thomas J. Mozdzer!-<*

* Department of Biology, Bryn Mawr College, Bryn Mawr, PA, USA
* Smithsonian Environmental Research Center, Edgewater, MO, LISA

Received 20 Nowember 2013; Accepted: 4 April 2014; Published: 30 April 2014

Asspdate Editor: Dennis F. Whigham

Cration: Caplan 15, Wheaton CH, Mozdzer T 2014, Belowground odvantoges in construction cost foalitate a ﬂ'_-,rptlc |:l-|-EII'It |n1.|l|:|5u:rn
AoB PLANTS 6: plu020; doi:10.1053 /ocbpla/plu0z0 o : I




Leaf Construction Costs Do NOT among differ
among lineages
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Lineage: p=0.20; N: p<0.001
Caplan et al 2014 AoB Plants



Construction Costs Differ In
Rhizomes
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Lineage: p<0.001
Caplan et al 2014 AoB Plants



Lower CC facilitate introduced
Phragmites Invasion
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What are the consequences of
iIntroduced Phragmites invasion on
trace gas emissions?

e C-source or C-sink?




Wetlands
DOI 10.1007/s13157-013-0417-x

ARTICLE

Increased Methane Emissions by an Introduced
Phragmites australis Lineage under Global Change

Thomas J. Mozdzer - J. Patrick Megonigal

Received: 25 June 2012 /Accepted: 21 March 2013
© Society of Wetland Scientists 2013

Thanks to student
intern David
Gonzalez!




Introduced has greater methane emissions,
which also increase with global change
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Mozdzer & Megonigal. 2013 Wetlands



Methane emissions (Jmol CH, m* s'l)

Methane emissions (Umol CH, m* s'l)
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Summary of Global Change on
Phragmites lineages

* Both lineages will likely increase
productivity in response to both CO, and N

— However, the introduced is more vigorous &
has a greater response to both global change
factors

— N Is driver for Phragmites invasion

e Expansion of introduced is likely due to:

— greater N uptake rates, greater photosynthetic
rates, RGRs, and all are influenced by 1 N
avalilability




Summary of Global Change on
Phragmites lineages

* Lower rhizome construction costs faclilitate
expansion of the introduced lineage when
compared to native lineage due to the
already high returns aboveground

Species shift to introduced Phragmites
and enhanced productivity with global
change may increase methane
emissions




Summary of Global Change on
Phragmites lineages

 Management options:
* We can’t do anything about CO,

e Limiting N availability can limit current and
future invasions




Maryland
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Current Research  Mduldll

 How will global change (1 CO, & N) affect
Phragmites invasion In Situ:

— Elevated CO, %N study to investigate global
change effects on ecophysiology,

biogeochemistry, surface elevation, and
INnvasion processes
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